EFFECTS OF TESTOSTERONE ON BILE ACID COMPOSITION OF BILE RATS

  • І. Lupaina
  • A.M. Liashevych
  • S.P. Veselsky
Keywords: testosterone propionate, cholates, free bile acids, conjugated bile acids, liver

Abstract

The study of sexual differences in the regulation of biliary secretory function of the liver is considered as one of the areas in hepatology. After all, the liver plays a role in mediating a number of systemic effects of sex hormones on the body and is a key organ of their metabolism. In particular, the correlation between the concentrations of sex hormones can determine the direction of physiological processes and their possible violations. Since hormones of a steroidal nature are considered to be one of the chains of effector mechanisms by which homeostasis is provided and processes of tissue proliferation, differentiation and growth occur, the correlation between the concentrations of steroid hormones can determine the direction of physiological processes and their possible disorders. The effects of androgens on cholate secretion remain poorly studied. Given the significant intersex differences in bile formation and bile secretion, the purpose of the study was to investigate the role of testosterone in the regulation of bile secretory function of the liver of
female rats. During the study, physiological methods were used (surgery, cannulation of the bile ducts, registration of the dynamics of bile secretion); biochemical methods (separation by thin layer chromatography of the main organic components of bile (bile acids and lipids (cholesterol, cholesterol esters, phospholipids, triglycerides, free fatty acids)) with their preliminary differential extraction and subsequent quantitative densitometric evaluation of individual components of this bioliquid on chromatograms; methods of mathematical statistics (using the software package Statistica 5.0). Cholic secretion in female rats increased under the influence of testosterone. Testosterone increased the concentrations of taurocholic, tauroсhenodeoxycholic and taurodeoxycholic and glycocholic acids. Instead, the content of glycoсhenodeoxycholic and glycodeoxycholic acids under the action of testosterone decreased significantly, and the concentration of free bile acids - cholic, chenodeoxycholic and deoxycholic acids increased. As the content of taurocholate and glycocholate increased in female rats under the influence of intraportal testosterone, this indicates an increase in the efficiency of the processes that provide conjugation
and transformation of bile acids in the liver of these animals.

References

1. Атаманюк НП., Дерев’янко ЛП., Талько ВВ., Яніна АМ., Родіонова НК., Фролова НО.,
Михайлова СС. Радіаційно-індуковані гормональні зміни в гіпофізарно-гонадній системі
самок щурів за різних типів опромінення. Наукові праці Чорноморського державного
університету імені Петра Могили. 2012:185(173):44 49.
2. Боровець О., Бенедь В., Решетнік Є., Весельський С., Макарчук М. Жовчносекреторна
функція печінки самок щурів в умовах блокади естрогенових рецепторів
тамоксифеномю. Наук. вісник Сх.-Європ. нац. унів-ту ім. Л. Українки. 2016;7:194-199.
3. Весельский СП., Лященко ПС., Лукьяненко ИА. Способ определения желчных кислот в
биологических жидкостях. Авторское свидетельство. №1624322; заявл. 25.01.1988;
опубл. 30.01.1991; Бюл. №4.
4. Волощук НІ. Вплив статі та різного рівня насиченості організму щурів статевими
гормонами на функціональний стан нирок інтактних щурів. Біофармацевтичний журнал.
2014;4(33):50-55.
5. Чернуха ІС., Решетнік ЄМ., Нурищенко НЄ., Весельський СП., Вплив тестостерону на
жовчнокислотний склад жовчі самців щурів. Вісник Черкаського університету. Серія
«Біологічні науки». 2016;2:122-129.
6. Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR, Kuipers F. New insights in the multiple
roles of bile acids and their signaling pathways in metabolic control. Curr Opin
Lipidol. 2018;29(3):194-202.
7. Cai Z, Jiang X, Pan Y, Chen L, Zhang L, Zhu K, Cai Y, Ling Y, Chen F, Xu X, Chen M.
Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a
high-cholesterol diet. BMC Genomics. 2015;6;16(1):59.
8. Chen J, Zhao KN, Liu GB. Estrogen-induced cholestasis: pathogenesis and therapeutic
implications. Hepatogastroenterology. 2013;60(126):1289-1296.
9. Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of
Nonalcoholic Fatty Liver Disease. Endocr Rev. 2019;40(2):417-446.
10. Huff T, Boyd B, Jialal I. Physiology, Cholesterol. In: StatPearls [Internet]. Treasure Island
(FL): StatPearls Publishing; 2021 Jan. 2021 Mar 2.
11. Martinot E, Sèdes L, Baptissart M, Lobaccaro JM, Caira F, Beaudoin C, Volle DH. Bile acids
and their receptors. Mol Aspects Med. 2017;56:2-9.
12. Mintziori G, Poulakos P, Tsametis C, Goulis DG. Hypogonadism and non-alcoholic fatty liver
disease. Minerva Endocrinol. 2017;42(2):145-150.
13. Sèdes L, Martinot E, Baptissart M, Baron S, Caira F, Beaudoin C, Volle DH. Bile acids and male
fertility: From mouse to human? Mol Aspects Med. 2017;56:101-109.
14. Shabanzadeh DM. New determinants for gallstone disease? Dan Med J. 2018;65(2):B5438.
15. Shen M, Shi H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int J
Endocrinol. 2015;294278.
16. Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol.
2018;15(465):36-47.
17. Yari M, Ahmadi R. The effects of testosterone and estradiol on serum creatine kinase level in
male rats. International Conference on Law, Humanities and Education (ICLHE'2013). 2013.
18. Zhang B, Shen S, Gu T, Hong T, Liu J, Sun J, Wang H, Bi Y, Zhu D. Increased circulating
conjugated primary bile acids are associated with hyperandrogenism in women with polycystic
ovary syndrome. J Steroid Biochem Mol Biol. 2019;189:171-175.
Published
2021-12-01
Pages
45-52
Issue
Section
Статті