RESEARCH OF PRODUCTION OF PROOXIDANTS IN THE TISSUES OF GRAINS OF ZEA MAYS L. DIFFERENT IN THE LEVEL OF RESISTANCE TO DISEASES OF CULTIVARS
Abstract
Reactive Oxygen species (ROS) cause free radical peroxidation of macromolecules (FRPO). The formation of malonic dialdehyde (MDA) is the marker of FRPO, and the consequences of changes in prooxidant-antioxidant system (PAS) are evidenced by changes in the activity of the enzyme cytochrome oxidase. The study of the role of ROS in anti-infective protection of animals, oxidative explosion processes, mechanisms of aging and apoptosis has opened up the prospects for the search for analogues in the plant world. Quantitative determination of PO and FRPO products was carried out on grains of Zea mays L. taken from plants of the following cultivars: "DK Burshtyn" (high disease-resistant cultivar), "DN Demeter" (medium disease-resistant cultivar) and "DK Veles" (low resistance). Evaluation of the level and sources of ROS generation was performed by spectrophotometric HBT test. The level of FRPO was assessed by the concentration of background and stimulated malonic dialdehyde (MDA). To assess the effects of PAS changes, the cytochrome oxidase activity was determined. As a result of the conducted researches, it was established that the tissues of grains of highly resistant variety Zea mays L. "DK Burshtyn" have the lowest background level and the highest level of stimulated by yeast and NaF generation of •O2-, which indicates the presence of a powerful activating ability, and especially calcium and NADPH oxidase signalling systems. It was found that with increasing disease resistance of Zea mays L. there is a decrease in the background and stimulated levels of MDA, which indicates a low degree of FRPO membrane lipids and may be due to increased AO of PAS. It is proved that during the transition from low-resistant to disease "DK Veles" cultivar to medium-resistant "DN Demeter" and high-resistant "DK Burshtyn" cultivar, the cytochrome oxidase activity increases, which may be explained by a decrease in the intensity of peroxide degradation of mitochondrial membranes as a result of the increased AOD. It is concluded that the prooxidant link of PAS is involved in maintaining the resistance of plant cultivars to disease, but requires a powerful compensatory antioxidant mechanism to protect against peroxide destruction of macromolecules.
References
образование и возможные функции. Вісник Харківського національного аграрного
університету. Серія біологія. 2007;3(12). С. 6–26.
2. Bhattacharjee S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and
signal transduction in plants. Curr. Sci. 2005; 89. P. 1113-1121.
3. Apel K, Hirt Н. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.
Plant Biol. 2004; 55. P. 373–399.
4. Dat JF, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant
stress responses. Cell. Mol. Life Sci. 2000; 57. P. 779-795.
5. Smirnoff N. Antioxidants and reactive oxygen species in plants. NY: Blackwell Publishing,
2005; 302 р.
6. Scandalios JG. The rise of ROS. Trends Biochem. Sci. 2002; 27. P. 483- 486.
7. Shao HB, Chu LY, Shao MA, Jaleel CA., Mi HM. Higher plant antioxidants and redox
signaling under environmental stresses. C R Biol. 2008; 331:433–41.
https://doi.org/10.1016/j.crvi.2008.03.011
8. Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering
antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005; 38. P. 995-1014.
9. Полесская ОГ. Растительная клетка и активные формы кислорода. Москва: КДУ, 2007.
140 с.
10. Казначєєва МС. Дослідження кількісного вмісту активних форм кисню та
антиоксидантів в тканинах цибулі ріпчастої, різних за рівнем стійкості до хвороб сортів.
Вісник Харківського національного університету імені В. Н. Каразіна. Серія : Біологія.
2011; 947. 13. С. 201-205. - Режим доступу:
http://nbuv.gov.ua/UJRN/VKhb_2011_947_13_32
11. Mosyakin S, Fedoronchuk M. Vascular plants of Ukraine. A nomenclatural checklist. Kiev:
1999. 346 p.
12. Bobrova M, Holodaieva O, Arkushyna H, Larycheva O, Tsviakh O. (2020). The value of the
prooxidant-antioxidant system in ensuring the immunity of plants. Revista de la Universidad
del Zulia. 11, 30 (jul. 2020), 237-266. DOI: https://doi.org/10.46925//rdluz.30.17.
13. Bobrova M, Holodaieva O, Koval S, Kucher O, Tsviakh O. The effect of hypothermia on the
state of the prooxidant-antioxidant system of plants. Revista de la Universidad del Zulia. 33.
2021. P. 82-101. DOI: https://doi.org/10.46925//rdluz.33.07
14. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants,
redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30:620–50.
DOI:10.1080/01926230290166724.
15. Тарчевский ИА. Сигнальные системы клеток растений. Наука, Москва, 2002; 294 с.