EFFECT OF HYPOTHERMIA ON THE CONTENT OF SUPEROXIDE ANION- RADICAL AND TBA-REACTIVE SUBSTANCES IN PLANT TISSUES
Abstract
The influence of stressors of different nature changes the state of the prooxidant and antioxidant system. The first and most aggressive active form of Oxygen is the superoxidation radical, the secondary product of free radical lipid peroxidation is malonic dialdehyde (MDA). Hypothermia is a necessary phenomenon for plants of temperate latitudes, and a necessary factor in extending the shelf life of edible vegetative parts of plants. The purpose of the study: to identify changes in the value of prooxidant activity in the tissues of edible parts of agricultural plants under the influence of changes in temperature. Quantitative determination of prooxidants and products of free radical peroxidation was investigated on tissue samples of edible parts of the following plants: Allium cepa L. Allium sativum L., Beta vulgaris L., Capsicum annuum L., Cucumis sativus L., Cucurbita pepo L., Daucus sativus (Hoffm.) Roehl., Lycopersicon esculentum Mill.s.l., Solanum melongena L. Solanum tuberosum L. The level of superoxide generation was carried out by spectrophotometric HCT test, the level of MDA was determined by reaction with TBA. As a result of the research it was found that the average value of increasing the generation of superoxide during cooling is 30.75%, during freezing - 49.35%, but the difference in the average value of ∆MDA in different types of hypothermia is almost absent (growth is 22.12% during cooling and 23.73% during freezing), which may be due to a powerful system of antioxidant tissue protection. Solanum tuberosum L., Allium sativum L., Beta vulgaris L. are the most resistant, in terms of changes in the prooxidant and antioxidant system to hypothermia; Capsicum annuum L. and Lycopersicon esculentum Mill.s.l. are the least resistant. The generative organs of plants are the least resistant to hypothermia than the vegetative ones. Freezing allows storing plant products for a longer time than refrigeration, however, chilled vegetables retain less prooxidants and products of free radical peroxidation in the tissues.
References
2. Колупаев Ю.Е., Карпец Ю.В. Активные формы кислорода при адаптации растений к стресовым температурам. Физиология и биохимия культ. растений. 2009;41. 2: 95-108.
3. Колупаев Ю.Е. Активные формы кислорода в растениях при действии стрессоров: образование и возможные функции. Вісник Харківського національного аграрного університету. Серія біологія. 2007;3(12):6–26.
4. Пиотровский М.С., Шевырева Т.А., Жесткова И.М., Трофимова М.С. Активация НАДФ∙Н-оксидазы плазмалеммы при действии низких положительных температур на этиолированные проростки кукурузы. Физиология растений. 2011;58. 2:234-242.
5. Trchounian A., Petrosyan M., Sahakyan N. Plant cell redox homeostasis and reactive oxygen species. Redox State as a Central Regulator of Plant-Cell Stress Responses / Eds. D.K. Gupta et al. Springer International Publishing Switzerland, 2016;25-50.
6. Лукаткин А.С. Холодовое повреждение теплолюбивых растений и окислительный стресс. Саранск: Изд-во Мордовского ун-та. 2002; 208 с.
7. Bhattacharjee S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 2005;89:1113-1121.
8. Apel K. Hirt Н. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Plant Biol. 2004; 55:373–399.
9. Dat J.F., Vandenabeele S., Vranova E. et al. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000; 57:779-795.
10. Smirnoff N. Antioxidants and reactive oxygen species in plants. NY: Blackwell Publishing, 2005; 302 р.
11. Scandalios J.G. The rise of ROS. Trends Biochem. Sci. 2002;27:483- 486.
12. Scandalios J.G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005;38:995-1014.
13. Войников В.К. Энергетическая и информационная системы растительных клеток при гипотермии. Новосибирск: Наука, 2013. 212 с.
14. Awasthi R., Bhandari K., Nayyar H. Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 2015; V. 3:11.
15. Полесская О.Г. Растительная клетка и активные формы кислорода. Москва: КДУ, 2007. 140 с.
16. Казначєєва М.С. Дослідження кількісного вмісту активних форм кисню та антиоксидантів в тканинах цибулі ріпчастої, різних за рівнем стійкості до хвороб сортів. Вісник Харківського національного університету імені В. Н. Каразіна. Серія : Біологія. 2011; 947. 13:201-205. - Режим доступу: http://nbuv.gov.ua/UJRN/VKhb_2011_947_13_32
17. Mosyakin S., Fedoronchuk M. Vascular plants of Ukraine. A nomenclatural checklist. Kiev: 1999. 346 p.
18. Bobrova M., Holodaieva O., Arkushyna H., Larycheva O., Tsviakh O. The value of the prooxidant-antioxidant system in ensuring the immunity of plants. Revista de la Universidad del Zulia. 11, 30 (jul. 2020): 237-266. DOI: https://doi.org/10.46925//rdluz.30.17.