ANATOMIC FEATURES OF LEAF OF RELICT PLANT SPECIES IN CONNECTION WITH DROUGHT RESISTANCE
Abstract
Due to intensive technological development, the pace of global climate change is increasing. In particular, it is manifested in sharp differences in temperatures, an increase in the number of abnormally high temperatures, long periods with low rainfall. Studying the relict species of plants that have multiple undergone global climate changes can help to understand the direction of developing adaptive mechanisms, in particular to overcome the drought problem.
The anatomical structure of the leaf of the relict rare species Magnolia obovata, M. denudata, M. kobus, Ginkgo biloba was investigated. The relative drought resistance of these species in terms of tissue hydration, water deficit, and water loss for 1 hour wilting was determined. All studied plants can be considered sufficiently drought-tolerant. These species can be placed in the order to reduce of drought resistance: G. biloba → M. kobus → M. obovata → M. denudata. At the same time, protection against conditions with insufficient amount of water at the anatomical level is manifested differently. In particular, xerophytic features of M. kobus and M. obovata are less cuticular evaporation due to the small epidermal cells, and a large number of stomata, which allows more intense absorption of water, and a greater percentage of palisade mesophyll, in which the cells are tightly located. M. denudata leaves have a thick epidermis on both sides, but the outer cell wall is thickened only on the adaxial side. Adaptive signs of G. biloba to arid conditions are thickenings of the leaf blade, of the epidermis on both sides and especially their outer shells, a stomata are deepened, reducing the size of the leaf blade, greater wateriness of leaves in comparison with magnolias. Therefore, G. biloba plants with a deep taproot system and less dependent on rainfall, more adapted at leaf level to retain existing water, and in magnolias having a fibrous root system, the leaf is adapted in the direction of rapid intense water absorption during fallout precipitation.
References
2. Beering DJ, Kelly CK. Evolutionary comparative analyses of the relationship between leaf structure and function. New Phytologist. 1996;134:35-5I.
3. Bercu R. Anatomy of Ginkgo biloba L. leaf (Ginkgoaceae). Annals of the Romanian Society for Cell Biology. 2013; 18(1):223-227.
4. Chen L, Zhang Ch, Han Y, Meng X, Zhang Y, Chu H, Ma H. Gingko biloba Extract (EGb) Inhibits Oxidative Stress in Neuro 2A Cells Overexpressing APPsw. BioMed Research International. 2019; 1: Article ID 7034983, 9 p. DOI.org/10.1155/2019/7034983
5. Chen LQ, Li CS. The epidermal characters and stomatal development of Ginkgo biloba. Bull Bot Res. 2004;24:418-422.
6. Сicuzza D, Newton A, Oldfield S. The Red List of Magnoliaceae. Cambridge, UK; 2007. 56 p.
7. Deng Sh, Ma J, Zhang L, Chen F, Sang Z, Jia Zh, Ma L. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology. 2019;19:321. DOI: 10.1186/s12870-019-1933-5.
8. Deroin T. Floral anatomy of Magnolia decidua (Q.Y.Zheng) V.S.Kumar (Magnoliaceae): recognition of a partial pentamery. Adansonia. 2010; 32 (1): 39-55. https://doi.org/10.5252/a2010n1a3.
9. Ginkgo Biloba, ed. by Teris A. van Beek. Amsterdam: Harwood Academic, 2000.
10. Gunning BES, Steer MW. Plant Cell Biology: Structure and Function, Jones and Bartlett, Boston, Mass, USA: 1996; 120 pp.
11. Hongbing G, Huan W, Fengguo D. Determination of free phenolics and combined phenolics in foliage of Magnolia sieboldii K. Koch Functional Materials. 2016; 23(3): 437-442. https://doi.org/10.15407/fm23.03.437.
12. Hui L, Qiu-Yuan X, Marjorie R. Lundgren D, Qing Ye. Different water relations between flowering and leaf periods: a case study in flower-before-leaf-emergence Magnolia species. Functional Plant Biology. 2016; 44(11): 1098-1110. https://doi.org/10.1071/FP16429.
13. Larcher W. Physiological Plant Ecology. Third edition, Springer-Verlag, New York: 1995; 504 pp.
14. Palagecha R. Culture of magnolias in Ukraine. Magnolia. 2014; 49(95):11-30.
15. Romeis B. 1948. Mikroskopische Technik. München, R. Oldenbourg.
16. Rudall PJ, Rowland A, Bateman R. Ultrastructure of Stomatal Development in Ginkgo biloba. International Journal of Plant Sciences. 2012; 173(8): 849-860. DOI: 10.1086/667230.
17. Xu F, Rudall PJ. Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Systematics and Evolution. 2006; 258(1-2): 1-15. DOI: 10.1007/s00606-005-0361-1.
18. Wang G, Cao F, Wang G, El-Kassaby YA. Role of temperature and soil moisture conditions on flavonoid production and biosynthesis-related genes in ginkgo (Ginkgo biloba L.) leaves. Open Natural Products Chemistry and Research. 2015; 3(1): 1000162. DOI: 10.4172/2329-6836.1000162.
19. Wang Zh, Perumalsamy H, Wang X, Ahn YJ. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Scientific Reports. 2019; 9:Article number: 411. DOI: 10.1038/s41598-018-36558-y.
20. Wen-Zhe L, Khidir H, Ya-Ling W. From leaf and branch into a flower: Magnolia tells the story. Bot Stud. 2014; 55: 28. doi: 10.1186/1999-3110-55-28
21. Zarinkamar F. Stomatal observations in Dicotyledons. Pakistan Journal Biology Science. 2007; 2: 199-219. DOI:10.3923/pjbs.2007.199.219.
22. Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S. Anatomy and lignin distribution of reaction wood in twoMagnolia species. Wood Science and Technology. 2000; 34(3): 183-196. DOI:10.1007/s002260000046
23. Жанг ДХ, Тохтарь ВК. Исследование засухоустойчивости перспективных видов Momordica charantia L. и M. Balsamina L. (Cucurbitaceae) Научные ведомости. Серия Естественные науки. 2011; 9 (104): Вып. 15: 43-47.
24. Коршук ТП, Палагеча РМ. Магнолії (Magnolia L.). Київ. нац. ун-т ім. Т.Шевченка. К., 2007;208.
25. Нужина НВ, Палагеча РМ. Особливості анатомічної будови пагонів різних за походженням видів магнолій. Інтродукція рослин. 2011;1:81-86.
26. Палагеча Р, Лісняк І. Визначення протипухлинної активності екстрактів поліфенолів групи флавоноїдів: магнололу, гонокіолу та обоватолу отриманих з кори магнолій (Magnolia L.). Вісник Київського національного університету імені Тараса Шевченка. Інтродукція та збереження рослинного різноманіття. 2014;1:47-51.