THE ROLE OF GAS TRANSMITTERS IN IMPLEMENTATION OF IMMUNE REACTIONS
Abstract
The review analyzes the literature data on the participation of molecules of nitrogen oxide, dihydrogen sulfide and carbon monoxide in the processes of activation of the immune system, inflammatory and anti-inflammatory reactions. Nitrogen oxide is produced by immune system cells (NK cells, mast cells, dendritic cells, phagocytic cells) and cells that play an important role in the implementation of the immune response (epitheliocytes, endothelial cells, fibroblasts, vascular smooth muscle cells, kecytocytes, kecirates, kecytes, keratocytes, keratocytes, keratocytes, kecytes, keratocytes, keratocytes, kecytes, keratocytes, keratocytes, keratocytes, kecytes, kecytes, keratocytes, keratocytes, keratocytes, keratocytes, vasculature, keratocytes The enzyme responsible for the formation of this gas transmitter is NO synthase and has at least three isoforms. The expression of isoforms is regulated by the production of cytokines, microbial stimuli, the presence of a substrate - arginine. Nitrogen oxide plays a significant role in the selection and development of T cells in the thymus, inhibits the adhesion of platelets and leukocytes to the endothelium, disrupts the process of diapedesis of monocytes and granulocytes In the case of autoimmune processes, nitrogen oxide protects the body from immunopathological influences.
Hydrogen sulfide has anti-inflammatory effects due to inhibition of anti-inflammatory cytokines, expression of cyclooxygenase-2, prostaglandin E2. Treatment of cells with hydrogen sulfide donors inhibits the expression of ox-LDL-lectin-like receptors. In addition, endogenous and exogenous hydrogen sulfide reduces the formation of atherogenic foam cells. The use of exogenous hydrogen sulfide inhibits the activation of NFκB by a hemoxygenase-1-dependent mechanism in macrophages. Although the vast majority of studies indicate anti-inflammatory effects, there is an increase in the level of tumor necrosis factor-alpha. It is important to find donors of hydrogen sulfide in order to use them as anti-inflammatory drugs.
Carbon monoxide in living organisms is formed endogenously as a result of the cleavage of heme-containing proteins. This process is catalyzed by the enzyme hemoxygenase. There is no doubt that carbon monoxide at low concentrations can affect cellular signaling pathways of transduction, which lead to modification of cellular functions, the formation of adaptive changes. The biological properties of low concentrations of carbon monoxide vary from the regulation of vascular tone, mitochondrial biogenesis, modulation of inflammation, apoptosis and cell proliferation. To control the amount of carbon monoxide released, new donor compounds are used that have already shown their anti-inflammatory properties. Hemoxygenase-1 is an enzyme involved in the implementation of anti-inflammatory functions of this gas transmitter.
References
2. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999;274:26071-26078. DOI: 10.1074/jbc.274.37.26071
3. Badiei A, Chambers ST, Gaddam RR, Fraser R, Bhatia M. Cystathionine-gamma-lyase gene silencing with siRNA in monocytes/macrophages protects mice against acute pancreatitis. Appl Microbiol Biotechnol. 2016;100:337-46. DOI 10.1007/s00253-015-6989-z
4. Badiei A, Gieseg S, Davies S, Izani Othman M, Bhatia M. LPS Up-Regulates Cystathionine gamma -Lyase Gene Expression in Primary Human Macrophages via NF-kappaB/ERK Pathway. Inflamm Allergy Drug Targets. 2015;14: 99-104. DOI: 10.2174/1871528114666151201201719.
5. Banick PD, Chen Q, Xu YA, Thom SR. Nitric oxide inhibits neutrophil β2 integrin function by inhibiting membrane-associated cyclic cGMP synthesis. J. Cell. Physiol. 1997;172:12–24. DOI: https://doi.org/10.1002/(SICI)1097-4652(199707)172:1<12::AID-JCP2>3.0.CO;2-G
6. Beschasnyi S, Hasiuk O. CO releasing (CORM-2) in the regulation of Ca2+ dependent K+ permeability of erythrocyte. Ukr z med biol sportu. 2020;5(2):166-171. DOI: 10.26693/jmbs05.02.166
7. Bilban M, Bach FH, Otterbein SL, Ifedigbo E, d'Avila JC, Esterbauer H, Chin BY, Usheva A, Robson SC, Wagner O, Otterbein LE. Carbon monoxide orchestrates a protective response through PPARgamma. Immunity. 2006;24:601-610. DOI: https://doi.org/10.1016/j.immuni.2006.03.012
8. Bleeker ML. Carbon monoxide intoxication. Handb Clin Neurol. 2015;131:191-203. DOI: 10.1016/B978-0-444-62627-1.00024-X.
9. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update Trends in Immunology. 2015;36(3):161-178. DOI: https://doi.org/10.1016/j.it.2015.01.003
10. Bogdan C.The function of nitric oxide in the immune system. in Handbook of Experimental Pharmacology.Volume: Nitric Oxide (ed. Mayer, B.) 443–492 (Springer, Heidelberg, 2000).
11. Bogdan C.The multiplex function of nitric oxide in autoimmunity. J Exp Med. 1998;187: 1361–1365. DOI: https://doi.org/10.1084/jem.187.9.1361
12. Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-κ B to protect endothelial cells from tumor necrosis factor-α-mediated apoptosis. J Biol Chem. 2002;277:17950-17961. DOI: 10.1074/jbc.M108317200
13. Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP. Carbon monoxide generated by heme oxygenase-1 suppresses endothelial cell apoptosis. J Exp Med. 2000;192(7):1015-1026. DOI: 10.1084/jem.192.7.1015
14. Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40:315-327. DOI: https://doi.org/10.1016/j.immuni.2014.02.009
15. Calafat AM, Polzin GM, Saylor J, Richter P, Ashley DL, Watson CH. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes. Tob Control. 2004;13:45-51. DOI: http://dx.doi.org/10.1136/tc.2003.003673
16. Carpenter L, Cordery D, Biden TJ. Protein kinase Cd activation by interleukin-1β stabilizes inducible nitric oxide synthase mRNA in pancreatic β-cells. J Biol Chem. 2001;276:5368–5374. DOI: 10.1074/jbc.M010036200
17. Cauwels A, Molle WV, Janssen B, Everaerdt B et al. Protection against TNF-induced lethal shock by soluble guanylate cyclase inhibition requires functional inducible nitric oxide synthase. Immunity. 2000;13:223–231. DOI: https://doi.org/10.1016/S1074-7613(00)00022-4
18. Chakravortty D, Kato Y, Sugiyama T, Koide N, Mu M, Yoshida T, Yokochi T. The inhibitory action of sodium arsenite on lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells: a role of Raf-1 in lipopolysaccharide signaling. J Immunol. 2001;166:2011–2017. DOI: https://doi.org/10.4049/jimmunol.166.3.2011
19. Chan ED, Morris KR, Belisle JT, Hill P, Remigio LK, Brennan PJ, Riches DW. Induction of inducible nitric oxide synthase–NO by lipoarabinomannan of Mycobacterium tuberculosis is mediated by the MEK1-ERK, MKK7-JNK and NF-κB signaling pathways. Infect Immun. 2001;69:2001–2010. DOI: 10.1128/IAI.69.4.2001-2010.2001
20. Chang C, Liao JC, Kuo L. Arginase modulates nitric oxide production in activated macrophages. Am J Physiol. 1998;274:H342–348. DOI: https://doi.org/10.1152/ajpheart.1998.274.1.H342
21. Chauveau C, Remy S, Royer PJ, Hill M, Tanguy-Royer S, Hubert FX, Tesson L, Brion R, Beriou G, Gregoire M, Josien R, Cuturi MC, Anegon I. Heme oxygenase-1expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood. 2005;106:1694-1702. DOI: https://doi.org/10.1182/blood-2005-02-0494
22. Cherla RP, Ganu RK. Stromal cell-derived factor 1α-induced chemotaxis in T cells is mediated by nitric oxide signaling pathways. J Immunol. 2001;166:3067–3074. DOI: https://doi.org/10.4049/jimmunol.166.5.3067
23. Chung SW, Liu X, Macias AA, Baron RM, Perrella MA. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Invest. 2008;118:239-247. DOI:10.1172/JCI32730
24. Closs EI, Scheld JS, Sharafi M, Forstermann U. Substrate supply for nitric oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol. 2000;57:68–74.
25. Coburn RF, Blakemore WS, Forster RE. Endogenous carbon monoxide production in man. J Clin Invest.1964;42:1172-1178.
26. Connelly L, Palacios-Callender M, Ameixa C, Moncada S., Hobbs AJ. Biphasic regulation of NF-κB activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol. 2001;166:3873–3881. DOI: https://doi.org/10.4049/jimmunol.166.6.3873
27. Dlaska M, Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol. 1999;162:6171–6177.
28. Du HP, Li J, You SJ, Wang YL, Wang F, Cao YJ, Hu LF, Liu CF. DNA methylation in cystathionine-gamma-lyase (CSE) gene promoter induced by ox-LDL in macrophages and in apoE knockout mice. Biochem Biophys Res Commun. 2016;469:776-82. DOI: https://doi.org/10.1016/j.bbrc.2015.11.132
29. Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor kappaB (NF-kappaB) pathway. J Biol Chem. 2014;289:9741-53. DOI: 10.1074/jbc.M113.517995
30. Fayad-Kobeissi S, Ratovonantenaina J, Dabire H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Rande JL, Mann BE, Motterlini R, Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol. 2016;102:64-77. DOI: https://doi.org/10.1016/j.bcp.2015.12.014
31. Felley-Bosco E, Bender FC, Courjault-Gautier F, Bron C, Quest AF. Caveolin-1 downregulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc. Natl Acad Sci USA. 2000;97:14334–14339. DOI: https://doi.org/10.1073/pnas.250406797
32. Forstermann U, Boissel JP, Kleinert H. Expressional control of the «constitutive» isoforms of nitric oxide synthase (NOSI and NOSIII). FASEB J. 1998;12:773–790. DOI: https://doi.org/10.1096/fasebj.12.10.773
33. Ganster RW,Taylor BS, Shao L, Geller DA. Complex regulation of human iNOS gene transcription by Stat1 and NF-κB. Proc Natl Acad Sci USA. 2001;98:8638–8643. DOI: https://doi.org/10.1073/pnas.151239498
34. Gong D, Cheng HP, Xie W, Zhang M, Liu D, Lan G, Huang C, Zhao ZW, Chen LY, Yao F, Tan YL, Li L, Xia XD, Zheng XL, Wang ZB, Tang CK. Cystathionine gamma-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun. 2016;470:107-16. DOI: https://doi.org/10.1016/j.bbrc.2016.01.003
35. Gorman D, Drewry A, Huang YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology. 2003;187:25-38.
36. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931-947. DOI: https://doi.org/10.1038/nrd4002
37. Gotoh T, Mori M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW264.7 cells. J Cell Biol. 1999;144:427–434. DOI: https://doi.org/10.1083/jcb.144.3.427
38. Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Rad Biol Med. 1998;25:404–433. DOI: https://doi.org/10.1016/S0891-5849(98)00094-X
39. Hickey MJ, Sharkey KA, Sihota EG, Reinhardt PH, Macmickeng JD, Nathan C, Kubes P. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 1997;11:955–964. DOI: https://doi.org/10.1096/fasebj.11.12.9337148
40. Huang CW, Feng W, Peh MT, Peh K, Dymock BW, Moore PK. A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacol Res. 2016;113:533-546. DOI: https://doi.org/10.1016/j.phrs.2016.09.032
41. Jamal Uddin M, Joe Y, Kim SK, Oh Jeong S, Ryter SW, Pae HO, Chung HT. IRG1induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell Mol Immunol. 2016;13:170-179. DOI: https://doi.org/10.1038/cmi.2015.02
42. Ji X, Damera K, Zheng Y, Yu B, Otterbein LE, Wang B. Toward carbon monoxide based therapeutics: critical drug delivery and developability issues. J Pharm Sci. 2016;105:406-416. DOI: https://doi.org/10.1016/j.xphs.2015.10.018
43. Jung SS, Moon JS, Xu JF, Ifedigbo E, Ryter SW, Choi AM, Nakahira K. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1058-L1067. DOI: https://doi.org/10.1152/ajplung.00400.2014
44. Karaghiosoff M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13:549–560. DOI: https://doi.org/10.1016/S1074-7613(00)00054-6
45. Kim HP, Wang X, Zhang J, Suh GY, Benjamin I, Ryter SW, Choi AM. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38β MAPK and Heat Shock Factor-1. J Immunol. 2005;175:2622-2629. DOI: https://doi.org/10.4049/jimmunol.175.4.2622
46. Kim NR, Nam SY, Ryu KJ, Kim HM, Jeong HJ. Effects of bamboo salt and its component, hydrogen sulfide, on enhancing immunity. Mol Med Rep. 2016;14:1673-80. DOI: https://doi.org/10.3892/mmr.2016.5407
47. Kim S, Joe Y, Jeong SO, Zheng M, Back SH, Park SW, Ryter SW, Chung HT. Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways. Innate Immun. 2014;20:799-815. DOI: https://doi.org/10.1177/1753425913508593
48. Kleinert H. et al. Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAKSTAT, AP-1 and NF-κB-signaling pathways. Br J Pharmacol. 1998;125:193–201. DOI: https://doi.org/10.1038/sj.bjp.0702039
49. Kretschmer R, Gessner G, Gorls H, Heinemann SH, Westerhausen M. Dicarbonyl bis(cysteamine)iron(II): a light induced carbon monoxide releasing molecule based on iron (CORM-S1). J Inorg Biochem. 2011;105:6-9. DOI: https://doi.org/10.1016/j.jinorgbio.2010.10.006
50. Kolupaev YuE, Karpets YuV, Beschasniy SP, Dmitriev AP. Gasotransmitters and their role in adaptive reactions of plant cells. Cytol Genet. 2019;53(5):392–406. DOI: https://doi.org/10.3103/S0095452719050098
51. Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther. 2009;329: 641-648. DOI: https://doi.org/10.1124/jpet.108.148049
52. Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, Motterlini R, Neviere R. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One. 2012;7:e41836. DOI: https://doi.org/10.1371/journal.pone.0041836
53. Lee HH, Han MH, Hwang HJ, Kim GY, Moon SK, Hyun JW, Kim WJ, Choi YH. Diallyl trisulfide exerts anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophages by suppressing the Toll-like receptor 4/nuclear factor-kappaB pathway. Int J Mol Med. 2015;35:487-95. DOI: https://doi.org/10.3892/ijmm.2014.2036
54. Lefer D J, et al. Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol. 1999;276:H1943–H1950. DOI: https://doi.org/10.1152/ajpheart.1999.276.6.H1943
55. Leffler CW, Parfenova H, Jaggar JH. Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol. 2011;301(1):H1-H11. DOI: https://doi.org/10.1152/ajpheart.1999.276.6.H1943
56. Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med. 2009;47:103-13. DOI: https://doi.org/10.1016/j.freeradbiomed.2009.04.014
57. Lуtvуnenko AP, Voznesenska ТYu, Yanchiy RI. The role of no and mexidol in contractility of ovarian and cervical parts of uterus under the condition of immune-mediated injury in mice. Fiziolohichnyi zhurnal. 2015;61(5):52-56.
58. Lohninger L, Tomasova L, Praschberger M, Hintersteininger M, Erker T, Gmeiner BM, Laggner H. Hydrogen sulphide induces HIF-1alpha and Nrf2 in THP-1 macrophages. Biochimie. 2015;112:187-95. DOI: https://doi.org/10.1016/j.biochi.2015.03.009
59. MacMicking JD, et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA. 1997;94:5243–5248 (1997). DOI: https://doi.org/10.1073/pnas.94.10.5243
60. MacMicking J, Xie Q-W, Nathan C. Nitric oxide and macrophage function. Ann Rev Immunol. 1997;15:323–350. DOI: https://doi.org/10.1146/annurev.immunol.15.1.323
61. Mazzola S, Forni M, Albertini M, Bacci ML, Zannoni A, Gentilini F, Lavitrano M, Bach FH, Otterbein LE, Clement MG. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs FASEB J. 2005;19:2045-2047. DOI: https://doi.org/10.1096/fj.05-3782fje
62. McCartney-Francis NL, SongX-Y, Mizel DE,Wahl SM. Selective inhibition of inducible nitric oxide synthase exacerbates erosive joint disease. J Immunol. 2001;166:2734–2740. DOI: https://doi.org/10.4049/jimmunol.166.4.2734
63. Miao L, Xin X, Xin H, Shen X, Zhu YZ. Hydrogen sulfide recruits macrophage migration by integrin beta1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci Rep. 2016;6:22363. DOI: 10.1038/srep22363 (2016)
64. Mitchell LA, Channell MM, Royer CM, Ryter SW, Choi AM, McDonald JD. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. Am J Physiol Lung Cell Mol Physiol. 2010;299:L891-L897. DOI: https://doi.org/10.1152/ajplung.00366.2009
65. Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem. 1997;272:32804-32809. DOI: doi: 10.1074/jbc.272.52.32804
66. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549-557. DOI: https://doi.org/10.1016/j.molmed.2004.09.003
67. Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules (CO-RMs). Expert Opin Invest Drugs. 2005;14:1305-1318. DOI: https://doi.org/10.1517/13543784.14.11.1305
68. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728-743. DOI: https://doi.org/10.1038/nrd3228
69. Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ. CORM1074 A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 2005;19:284-286. DOI: https://doi.org/10.1096/fj.04-2169fje
70. Motterlini R, Sawle P, Hammad J, Mann BE, Johnson TR, Green CJ, Foresti R. Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs). Pharmacol Res. 2013;68:108-117. DOI: https://doi.org/10.1016/j.phrs.2012.12.001
71. Moulian N,Truffault F, Gaudry-Talarmain YM, Serraf A, Berrih-Aknin S. In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood. 2001;97:3521–3530. DOI: https://doi.org/10.1182/blood.V97.11.3521
72. Munder M. et al. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol. 1999;163:3771–3777.
73. Musial A, Eissa NT. Inducible nitric oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem. 2001;276:24268–24273. DOI: 10.1074/jbc.M100725200
74. Nagy P, Winterbourn CC. Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol. 2010;23:1541-3. DOI: https://doi.org/10.1021/tx100266a
75. Nicholson B, Manner CK, Kleeman J, MacLeod CL. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J Biol Chem. 2001;276:15881–15885. DOI: doi: 10.1074/jbc.M010030200
76. Noguchi S, et al. Guanabenz-mediated inactivation and enhanced proteolytic degradation of neuronal nitric oxide synthase. J Biol Chem. 2000;275:2376–2380. DOI: 10.1074/jbc.275.4.2376
77. Nuszkowski A, et al. Hypochlorite-modified low density lipoprotein inhibits nitric oxide synthesis in endothelial cells via an intracellular dislocalization of endothelial nitric oxide synthase. J Biol Chem. 2001;276:14212–14221. DOI: doi: 10.1074/jbc.M007659200
78. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappa B via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med. 2006;41:106-19. DOI: https://doi.org/10.1016/j.freeradbiomed.2006.03.021
79. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422-428. DOI: https://doi.org/10.1038/74680
80. Palinkas Z, Furtmuller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, Jasnos K, Wallace JL, Obinger C, Nagy P. Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol. 2015;172:1516-32. DOI: https://doi.org/10.1111/bph.12769
81. Paul-Clark MJ, Gilroy DW, Willis D, Willoughby DA, Tomlinson A. Nitric oxide synthase inhibitors have opposite effects on acute inflammation depending on their route of administration. J Immunol. 2001;166:1169–1177. DOI: https://doi.org/10.4049/jimmunol.166.2.1169
82. Pellacani A, et al. Down-regulation of high mobility group-I(Y) protein contributes to the inhibition of nitric oxide synthase 2 by transforming growth factor-β1. J Biol Chem. 2001;276:1653–1659. DOI: doi: 10.1074/jbc.M008170200
83. Piantadosi CA. Carbon monoxide poisoning. N Engl J Med. 2002;347:1054-1055.
84. Piantadosi CA. Diagnosis and treatment of carbon monoxide poisoning. Respir Care Clin N Am. 1999;5:183-202.
85. Ratovitski EA, et al. An inducible nitric oxide synthase (NOS) – associated protein inhibits NOS dimerization and activity. J Biol Chem. 1999;274:30250–30257. DOI: 10.1074/jbc.274.42.30250
86. Rios EC, Szczesny B, Soriano FG, Olah G, Szabo C. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int J Mol Med. 2015;35:1741-6. DOI: https://doi.org/10.3892/ijmm.2015.2176
87. Riquelme SA, Bueno SM, Kalergis AM. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility. Immunology. 2015;144:321-332. DOI: https://doi.org/10.1111/imm.12375
88. Rodriguez-Pascual F, et al. Complex contribution of the 3’-untranslated region to the expressional regulation of the human inducible nitric oxide synthase gene. Involvement of the RNA-binding protein HuR. J Biol Chem. 2000;275:26040–26049. DOI: doi: 10.1074/jbc.M910460199
89. Rose JJ. Wang L, Xu Q, McTiernan CF, Shiva S, Tejero J, Gladwin MT. Carbon monoxide poisoning: pathogenesis, management and future directions of therapy. Am J Respir Crit Care Med. 2017;195(5):607-613. DOI: http://dx.doi.org/10.1164/rccm.201606-1275CI
90. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583-650. DOI: https://doi.org/10.1152/physrev.00011.2005
91. Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 2016;167:7-34. DOI: https://doi.org/10.1016/j.trsl.2015.06.011
92. Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004;2004(230):RE6. Published 2004 Apr 20. doi:10.1126/stke.2302004re6
93. Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem. 2002;234-235: 249-63. DOI: https://doi.org/10.1023/A:1015957026924
94. Ryter SW, Otterbein LE. Carbon monoxide in biology and medicine. Bioessays. 2004;26: 270-280. DOI: https://doi.org/10.1002/bies.20005
95. Shi FD, et al. Control of the autoimmune response by type 2 nitric oxide synthase. J Immunol. 2001;167:3000–3006. DOI: https://doi.org/10.4049/jimmunol.167.5.3000
96. Shinohara M, Kibi M, Riley IR, Chiang N, Dalli J, Kraft BD, Piantadosi CA, Choi AM, Serhan CN. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. Am J Physiol Lung Cell Mol Physiol. 2014;307:L746-L757. DOI: https://doi.org/10.1152/ajplung.00166.2014
97. Simon T, Pogu S, Tardif V, Rigaud K, Remy S, Piaggio E, Bach JM, Anegon I, Blancou P. Carbon monoxide-treated dendritic cells decrease β1-integrin induction on CD8⁺ T cells and protect from type 1 diabetes. Eur J Immunol. 2013;43:209-218. DOI: https://doi.org/10.1002/eji.201242684
98. Sjostrand T. Endogenous production of carbon monoxide in man under normal and pathophysiological conditions. Scand J Clin Lab Invest. 1949;1:201-214. DOI: https://doi.org/10.3109/00365514909069943
99. Sjostrand T. The formation of carbon monoxide by the decomposition of hemoglobin in vivo. Acta Physiol Scand. 1952;26: 338-344. DOI: https://doi.org/10.1111/j.1748-1716.1952.tb00915.x
100. Sagach VF, Kotsuruba AV, Bazilyuk OV, Meged EF, Buchanevich OM, Gulaya NM, Stepanenko LG. Arginase inhibitors as a new class of antihypertension drugs: action of urea on oxidative metabolism of lipids at chronic hypertension Fiziolohichnyi zhurnal. 2011;47(5):3-11.
101. Stuehr D. Mammalian nitric oxide synthases. Biochim. Biophys. Acta. 1999;1411: 217–230. DOI: https://doi.org/10.1016/S0005-2728(99)00016-X
102. Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun. 1994;205:1333-1337. DOI: https://doi.org/10.1006/bbrc.1994.2811
103. Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-Wolf KE, Piantadosi CA. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest. 2007;117:3730-3741. DOI: 10.1172/JCI32967
104. Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci. 2007;120:299-308. DOI: 10.1242/jcs.03318
105. Tai XG, et al. Expression of an inducible type of nitric oxide (NO) synthase in the thymus and involvement of NO in deletion of TCR-stimulated double-positive thymocytes. J Immunol. 1997;158:4696–4703.
106. Tochio H,Ohki S, Zhang Q, Li M, Zhang M. Solution structure of a protein inhibitor of neuronal nitric oxide synthase. Nature Structural Biol. 1998;5:965–969. DOI: https://doi.org/10.1038/2940
107. Umansky V, et al. Co-stimulatory effect of nitric oxide on endothelial NF-κB implies a physiological self-amplifying mechanism. Eur J Immunol. 1998;28:2276–2282. DOI: https://doi.org/10.1002/(SICI)1521-4141(199808)28:08<2276::AID-IMMU2276>3.0.CO;2-H
108. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science. 1993;259:381-384. DOI: 10.1126/science.7678352
109. Von Burg R. Carbon monoxide. J Appl Toxicol. 1999;19:379-386.
110. Wallace J, Buret A, Nagy P, et al. THU0464 phase 2 clinical trial of the safety of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) Annals of the Rheumatic Diseases. 2019;78:522.
111. Wang XH, Wang F, You SJ, Cao YJ, Cao LD, Han Q, Liu CF, Hu LF. Dysregulation of cystathionine gamma-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal. 2013;25:2255-62. DOI: https://doi.org/10.1016/j.cellsig.2013.07.010
112. Wegiel B, Larsen R, Gallo D, Chin BY, Harris C, Mannam P, Kaczmarek E, Lee PJ, Zuckerbraun BS, Flavell R, Soares MP, Otterbein LE. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J Clin Invest. 2014;124:4926-4940. DOI: https://doi.org/10.1172/JCI72853.
113. Werner-Felmayer G, Golderer G, Werner ER.Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr. Drug Metabol. 2002;3(2):159-173. DOI: https://doi.org/10.2174/1389200024605073
114. Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun. 2005;326:794-8. DOI: https://doi.org/10.1016/j.bbrc.2004.11.110
115. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 2010;12:1147-54. DOI: https://doi.org/10.1089/ars.2009.2899
116. Zhang H, Guo C, Wu D, Zhang A, Gu T, Wang L, Wang C. Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS One 7: e41147, 2012. DOI: https://doi.org/10.1371/journal.pone.0041147
117. Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312:L155-L162. DOI: https://doi.org/10.1152/ajplung.00449.2016
118. Zhao ZZ, Wang Z, Li GH, Wang R, Tan JM, Cao X, Suo R, Jiang ZS. Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp Biol Med (Maywood). 2011;236:169-76. DOI: https://doi.org/10.1258/ebm.2010.010308
119. Zhong Q, Huang Y, Shen H, Chen Y, Chen H, Huang T, Zeng EY, Tao S. Global estimates of carbon monoxide emissions from 1960 to 2013. Environ Sci Pollut Res Int. 2017;24:864-873. DOI: 10.1007/s11356-016-7896-2