УДК 502.7-568.1 (22)

Т. И. Котенко , А. И. Зиненко , С. В. Гаврилюк , З. В. Селюнина

СТЕПНАЯ ГАДЮКА *VIPERA R. RENARDI* (CHRISTOPH, 1861) ОСТРОВА ОРЛОВ (ТЕНДРОВСКИЙ ЗАЛИВ)

¹ Институт зоологии им. И.И. Шмальгаузена НАН Украины, г. Киев; ² Музей природы Харьковского национального университета им. В. Н. Каразина; ³ Национальный природный парк «Двуречанский», Харьковская обл.; ⁴ Национальный природный парк «Олешковские пески», Херсонская обл.; ⁵ Херсонский государственный аграрный университет.; ⁶ Черноморский биосферный заповедник НАН Украины, Херсонская обл.

Ключевые слова: степная гадюка, о. Орлов, популяция, динамика численности, размеры тела.

Дифференциация популяций и видообразование на островах служит предметом изучения зоологов, начиная с Дарвина и Уоллеса. Изоляция, простые экосистемы, небольшие размеры популяций и высокая скорость эволюционных изменений делают островные виды привлекательными для морфологических и эволюционных исследований. Однако островные популяции особенно уязвимы к любым средовым изменениям, и гораздо беззащитнее материковых перед антропогенными угрозами. Исследование изменений, происходящих при сокращении небольших изолированных популяций тем более актуально, что все больше фрагментированных материковых популяций превращается в «островные» из-за непреодолимых преград антропогенного происхождения. Радикальные изменения вплоть до исчезновения популяций происходит не на эволюционных этапах, а на протяжении лишь десятков лет [10].

Мы рассматривали многолетнюю динамику численности и размеров тела изолированной популяции степной гадюки *Vipera r. renardi* (Christoph, 1861) на о. Орлов Тендровского залива Черного моря в связи с изменениями растительных сообществ, качественного и количественного состава фауны острова. Исследования такого плана дают возможность увидеть почти в реальном времени микроэволюционные изменения, которые происходят в естественных популяциях.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ

Динамику флоры и фауны острова, а также его геоморфологических условий анализировали ретроспективно, используя многолетние данные наблюдений, опубликованные работы и материалы Летописи природы Черноморского биосферного заповедника. Данные по экологии степных гадюк о. Орлов и использованных для сравнения популяций материковых

заповедных участков и других более отдаленных популяций собирали на протяжении ряда лет. Учеты численности гадюк маршрутным способом [12] проводили Т. Б. Ардамацкая (1954–1990 гг.) и Т. И. Котенко (1976–1982, 2000–2009 гг.). В эти же годы изучали питание гадюк как бескровным методом – путем изучения экскрементов в мешках, так и методом вскрытия желудков (в 50-е гг.).

В 2011–2012 гг. С. В. Гаврилюком была предпринята попытка провести абсолютный учет численности гадюк на острове методом мечения с повторными отловами [3]. Учеты проводились в период весеннего пика активности гадюк в течение светлого времени суток с 8 до 17 часов. При этом каждая отловленная гадюка была помечена небольшим пятном лака для ногтей темно-зеленого цвета, также проводилось фотографирование головы, туловища и хвоста гадюк со всех сторон. Наличие метки и индивидуальные особенности щиткования и рисунка позволяют узнать повторно отловленную особь. Также оценивали территориальное распределение гадюк в 2011 г. – на всей территории острова, в 2012 г. – в западной, наиболее возвышенной его части.

Описание морфологии проводили в соответствии с общепринятой методикой [13]. Длину тела измеряли рулеткой и длину хвоста — штангенциркулем, вес определяли с помощью электронных весов с точностью до грамма. Для анализа полученных данных использовали стандартные статистические методы обработки [12] и программу Statistica 7.0.

Остров Орлов

Расположение. Остров Орлов находится в Тендровском заливе Черного моря на расстоянии 3,5 км на юго-запад от полуострова Ягорлыцкий Кут. Географические координаты центра острова: 46°16'20.88"с.ш., 31°44'2.78"в.д. В настоящее время площадь острова вместе с внутренними озерами составляет 0,24 км². С 1927 г. о. Орлов входит в состав территории Черноморского заповедника. Современное административное подчинение: Краснознаменский сельский совет Голопристанского р-на Херсонской обл.

Геология. Тендровский залив и о. Орлов находятся в пределах Причерноморской впадины, на стыке Восточно-Европейской платформы с молодой (эпигерцинской) Скифской, фундаментом которой являются палеозойские и более древние породы, собранные в складки. Район расположения Джарылгачского, Тендровского и Ягорлыцкого заливов Черного моря относят к береговой зоне Нижнеднепровской древнедельтовой равнины. Эта равнина сложена песчано-глинистыми отложениями и является вюрмской террасой Днепра [16].

Остров имеет материковое происхождение — это останец коренной части суши. Он образовался во время последней трансгрессии Черного моря (2,5 — 3 тыс. лет назад). Вероятно, остров долгое время сохранял связь с материком, которую окончательно утратил в последние 500 лет.

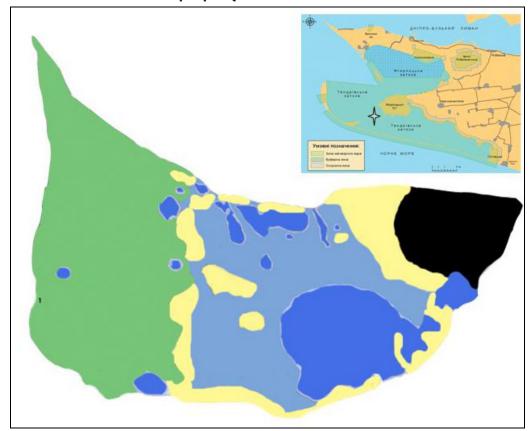


Рис. 1. Картосхема о. Орлов состоянием на 2012 г.

Примечания: - участок

- участки средней степени деградации (зарастающие старые колонии бакланов), или непригодные для обитания гадюки биотопы (тростниковые заросли);

- внутренние воды;

- переувлажненные наиболее низкие участки о-ва;

- участок «выжженной» бакланами земли

1 - полевой лагерь (руины хозяйственной постройки)

Рельеф плоско-низинный с небольшим понижением в центральной части. Восточная и западная части острова приподняты над остальной поверхностью, в некоторых местах заканчиваются обрывами высотой до полутора метров. Центр острова затапливается при весенних штормах югозападного направления. Кроме того, растительность и почвенный покров острова после суровых зим страдают от нагромождения льдин при вскрытии заливов. Остров богат внутренними озерами, многие из которых частично или полностью пересыхают в летний период.

В районе острова сложились особые гидрологические условия, которые определяются двумя основными факторами: 1) пониженной, по сравнению с другими районами северо-западной части Черного моря, волновой активностью (за счет волногасящего влияния о. Орлов с юга, мыса Крайнего с востока, бара Загреба и Новых островов с северо-запада); 2) эвтрофицирующим воздействием колоний морских птиц на острове.

В последние годы из-за изменения гидродинамики в Ягорлыцком и западной части Тендровского заливов идет активное размывание западной, северо-западной и восточной частей острова, а также наращивание аккумулятивного материала в его северной части

Климат. В целом Херсонская обл. находится в континентальной области климатической зоны (пояса) умеренных широт и характеризуется умеренно-континентальным климатом с мягкой малоснежной зимой и жарким засушливым летом, но климат острова из-за смягчающего действия моря имеет субтропические черты [2, 16].

Таблица 1. Категории угодий, типы растительности, формации острова Орлов.

	Площадь	
Растительный покров	га	%
	1 a	/0
Категории угодий		
Воды	3,6	12,9
Болота	0,9	3,2
Солонцы и солончаки	23,5	83,9
ИТОГО	28	100
Типы растительности		
Болота	0,9	3,7
Галофитная растительность	267	11,1
Степи	20,8	85,3
ИТОГО	24,4	100
Формации и агломерации	1	1
Тростниковые болота	0,9	3,7
Солерос травянистый	0,7	28,9
Лебеда бородавчатая	2,8	11,5
Пырей ползучий	0,5	2,1
Бескильница Фомина	2,9	11,9
Астра солончаковая	0,7	2,9
Заросли сбойных и переложных растений	15,9	65,2
Колосняк черноморский	0,7	2,9
ИТОГО	24,4	100

Почвы. Анализ образцов почв, взятых в разных местах острова, показал, что по механическому составу почвы в основном супесчаные, иногда встречаются песчано-суглинистые. Количество гумуса колеблется от 3,39 % до 10,09 %. Относительно высокое содержание гумуса объясняется тем, что на острове гнездится большое количество птиц, которые привносят на остров значительный объем органического вещества. Почвы острова характеризуются хлоридно-сульфатным засолением [11].

Растительность. По материалам Организационно-хозяйственного плана (1978 г.) [9] на о. Орлов выделены следующие типы растительности, растительные формации и агломерации (табл. 1). По сравнению с приведенными данными сейчас соотношение растительных формаций острова изменились вследствие гидродинамических процессов в Тендровском заливе, а также изменений видового состава орнитофауны.

Фауна. Фауна наземных позвоночных острова довольно бедна. Земноводные отсутствуют, пресмыкающиеся представлены двумя видами: степной гадюкой и прыткой ящерицей *Lacerta agilis* L., 1758, которая так же, как и гадюка, обитает в западной части острова.

В настоящее время из гнездящихся птиц на о. Орлов наиболее многочисленные розовый пеликан *Pelecanus onocrotalus*, большой баклан *Phalacrocorax carbo* и чайка хохотунья *Larus cachinnans*. В последние годы массовым видом гнездящихся утиных является гага обыкновенная *Somateria mollissima*, встречаются воробьиные птицы тростниковых зарослей, над островом часто охотятся луни *Circus cyaneus*, *C. aeruginosus*.

Значительную площадь занимают колонии большого баклана. Восточная часть острова практически полностью застроена гнездами, центр и юг острова застроены частично. Известно, что экскременты бакланов содержат в 30 раз больше аммиака, чем экскременты других видов птиц. При строительстве гнезд бакланы используют всю наземную растительность и ветошь, оставляя открытые участки почвы, которая обильно покрывается в гнездовой период экскрементами, что уничтожают подземные части растений и хранящийся в почве семенной материал. Тотальная застройка гнездами бакланов западной части острова привела к практически полному уничтожению растительного покрова (рис. 2, 3).

острове постоянно обитает Ha вида млекопитающих: восточноевропейская полевка Microtus rossiaemeridionalis и домовая мышь Mus musculus [14]. Зимой по льду на остров заходят лисицы Vulpes vulpes и Nyctereutes procyonoides, численность енотовидные собаки которых перед началом гнездования. регулируется Из насекомых в августе преобладают прямокрылые Orthoptera.

Рис. 2. Колония баклана на о. Орлов.

Рис. 3. Гнездо баклана.

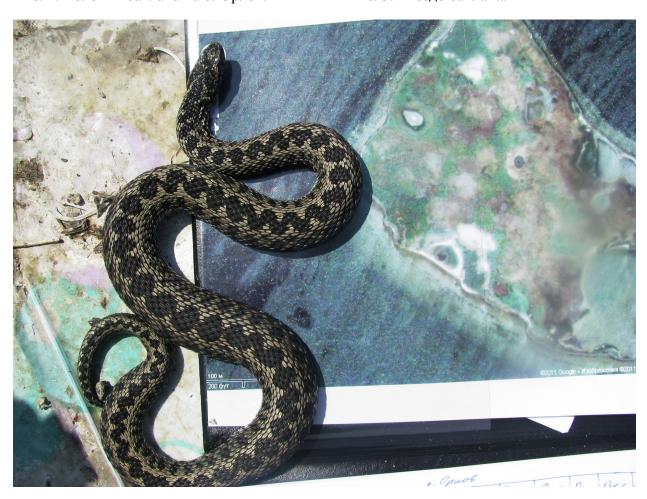


Рис. 4. Степная гадюка на о-ве Орлов

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Пространственное распределение, плотность населения V.r.renardi на о-ве Орлов, многолетняя динамика численности. По литературным данным и

Т. И. Котенко, А. И. Зиненко, С. В. Гаврилюк, З. В. Селюнина

нашим наблюдениям (Т.Котенко) в 50-е – 80-е гг. ХХ века гадюка на острове встречалась повсеместно, от солончаков до разреженных тростниковых зарослей. В 2000 г. ранней весной гадюки встречались в центральной части острова на берегу небольшого засоленного озера, возле руин хозяйственной постройки. Сейчас гадюки в основном занимают западную, наиболее возвышенную и свободную от гнездовий бакланов, часть острова площадью 11-12 га, покрытую высокой травянистой растительностью с преобладанием лебеды, щавеля, злаков. По наблюдениям 2000–2012 гг. в остальных частях острова (пониженной, центральной и восточной) степная гадюка не встречается. Такое изменение пространственном распределении В объясняется действием двух факторов – периодическим подтоплением центральной части острова и наличием колоний бакланов в его восточной части.

Плотность популяции изначально по данным учетов в 1956 г. была оценена как чрезвычайно высокая – 54,4 особи на гектар [1]. Однако, скорее всего, эти данные были завышены в 4 раза из-за ошибки в расчете площади учетных площадок, т. е. реальная плотность населения гадюки составляла 13,6 ос./га. В публикациях на основании учетов в 70-80-х гг. указана плотность 8 - максимально - 25 ос./га [4, 7, 8]. Весной 1998 г. расчетная плотность популяции составила 17,5 ос./га (на протяжении маршрута менялась от 10 до 25 ос./га), в 2000 г. – 32,5 (18,8–37,5) ос./га [8]. В 2008 г. 14 и 16 апреля на двух участках общей площадью 60 м² было отловлено 6 гадюк, однако привести плотность популяции не представляется возможным, т. к. здесь скорее наблюдалась временная агрегация змей. В 2011-2012 гг. была предпринята попытка оценить абсолютную численность популяции гадюк, используя метод повторных отловов. Однако небольшое количество отловленных гадюк (10 особей) не позволяют этого сделать, а иная методика учета не дают возможности сравнить плотность популяции с более ранними данными.

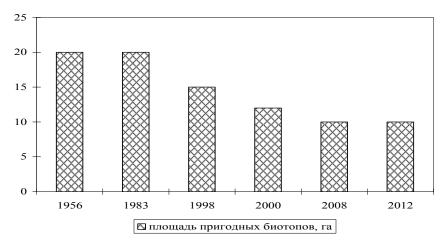


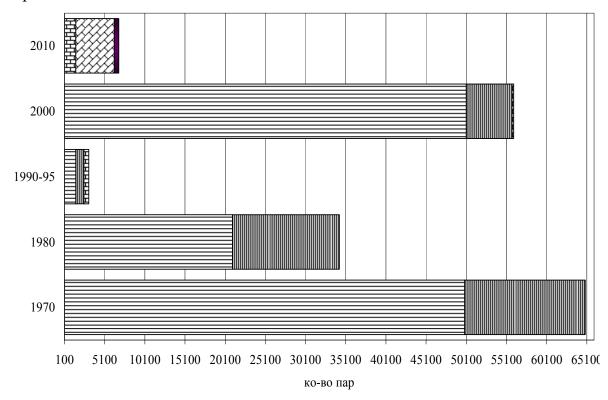
Рис. 5. Изменение площади пригодных биотопов степной гадюки на о. Орлов.

Нет сомнений, что даже при сохранении плотности населения в западной части острова в рамках значений многолетних флуктуаций, абсолютная численность популяции сокращается за счет уменьшения пригодных для обитания гадюки биотопов. Население острова должно было начать снижаться с конца 80-х — начала 90-х гг. из-за периодических (раз в 3—4 года) затоплений центральной части острова, изменений в его растительном покрове и фауне (рис. 5).

Морфология.

Гадюки с острова знамениты своими максимальными для вида размерами [16] (рис. 4). Впервые о крупных гадюках с о. Орлов стало известно благодаря публикациям Т. Б. Ардамацкой [1]. Согласно этой работе, степные гадюки островной популяции отличались от материковых (в основном для сравнения брались популяции с п-ва Ягорлыцкий Кут) по ряду признаков, главным образом связанных с размерами тела: длиной тела (максимальные значения 640 мм по данным Т. Б. Ардамацкой [1], и 700 мм по данным Т. И. Котенко [6] и массой 300 г., в то время как на лесостепных участках Черноморского заповедника максимальная масса не превышала 200 г. В целом для острова отмечалась также высокая плодовитость – 27–31 эмбрионов [6; Котенко, неопубликованные данные]. В целом, популяция острова довольно оригинальна в плане изменчивости признаков фолидоза, хотя и, безусловно, близка к другим географически близким популяциям V. renardi [Котенко, Зиненко, неопубликованные данные]. Филогеографические сделанные на основании анализа последовательностей исследования митохондриального цитохрома Б показали, что популяция острова относится кроме гаплогруппе степной гадюки, распространенной также и на Правобережье. Полностью идентичные последовательности были найдены в Кировоградской области, а кроме того вместе с гаплотипами другой широко распространенной между Волгой и Днепром группы – на острове Чурюк и на Ягорлыцком Куте, показывая общность происхождения и недавнюю изоляцию этих популяций [Zinenko et al., неопубликованные данные].

Небольшой объем выборок не позволяет провести полноценное сравнение размеров тела гадюк в разные годы. Для того, чтобы дать характеристику современному состоянию популяции нам пришлось объединить данные 2008, 2011 и 2012 гг. Хотя полученные различия между размерами тела в 2000 и 2008–2012 гг. недостоверны, налицо стойкий тренд к уменьшению длины тела змей обоих полов, сильнее выраженный у самок (табл. 2).


Таблица 2. Размерные характеристики популяции степной гадюки о. Орлов в

разные периоды						
	Признак, стат. параметр	1970-е	2000	2008-2012		
Самцы	L., мм, Среднее ± SE, min-max, SD, n L. cd., мм, Среднее ± SE, min-max,	598.8 ± 9.55 500-695 48.7 n = 22 78.14 ± 0,82 68-85	526.9 ± 34.0 404-655 96 n = 8 71.1 ± 3.5 57-85	448.1 ± 17.0 $350-580$ 63.7 $n = 14$ 61.7 ± 2.0 $46-75$		
	SD, n L./L. cd .	5.3	9.8	7.5		
	Среднее ± SE, min-max, SD, n	7.67 ± 0.1 6.7-8.7 0.49	7.38 ± 0.2 $6.7-8.7$ 0.6	7.3 ± 0.2 $6.0-8.7$ 0.65		
Самки	L., мм, Среднее ± SE, min-max, SD, n	598.2 ± 21,54 470-700 53,2 n = 34	497.6 ± 43.5 411-650 97.2 n = 5	415.7 ± 4.3 405-426 8.6 n = 4		
	L. cd., мм, Среднее ± SE, min-max, SD, n	57.76 ± 2.13 47-68 5.14 n = 33	49.8 ± 3.6 43-60 8.0 n=5	37.0 ± 3.5 30-41 6.1 n=3		
	L./L. cd. Среднее ± SE, min-max, SD, n	$ \begin{array}{c} 10.35 \pm 0.3 \\ 9.12 - 12.0 \\ 0.68 \\ n = 33 \end{array} $	$ \begin{array}{r} 10.0 \pm 0.7 \\ 7.9-11.9 \\ 1.5 \\ n = 5 \end{array} $	$ 11.5 \pm 1.2 9.9-13.8 2.1 n = 3 $		

Примечание: L. – длина тела, L. cd. – длина хвоста, min-max – минимальное и максимальное значения, SE – ошибка среднего, SD – дисперсия, n – объем выборки.

Пищевые объекты и динамика их численности

В спектр питания степной гадюки входит широкий набор животных. Основу почти всегда составляют грызуны, саранчовые и ящерицы. Однако популяция о. Орлов весьма специфична и отличается от материковых популяций. По устным сообщениям Т. Б. Ардамацкой в периоды гнездования черноголовой чайки и морского голубка, птенцы и яйца этих видов составляли основу рациона гадюки в весенний период. По данным Т. И. Котенко [5] в период гнездования более 90 % рациона взрослых гадюк составляли птенцы мелких чайковых птиц, серой утки и куликов, в остальное же время гадюки питались полевками. Если наблюдался временный спад их численности, то наблюдалось переключение гадюк на питание прыткой ящерицей [5]. Вся возвышенная часть острова была местом обитания полевок. Как пишет Т. Б. Ардамацкая [1], их было так много, что имея определенную сноровку, полевку возможно было ловить руками. Такая же высокая численность полевок сохранялась на острове до середины 80-х годов (относительная численность составляла до 30 особей на 1км маршрута). Отличия островной популяции гадюк, таким образом, заключались в наличии в их рационе птенцов, общим обилием потенциальных жертв-позвоночных, а также меньшим значением прямокрылых для прокорма по сравнению с материком.

■ черноголовая чайка+морской голубок шкрачки пред серебристая чайка обольшой баклан розовый пеликан Рис. 6. Динамика количества гнездящихся на о. Орлов птиц.

В последние 10 лет произошли изменения в видовом составе гнездящихся на острове птиц. Массовые колониальные гнездования мелких чайковых птиц — потенциальных пищевых объектов гадюк (черноголовой чайки, морского голубка, речной, пестроносой и чайконосой крачек), сменились на гнездования крупных «агрессивных» видов: большого баклана, розового пеликана, серебристой чайки (рис. 6). Строительная деятельность большого баклана привела к уничтожению растительного покрова восточной части острова. Свободные от растительности и обломочного материала участки заняли розовые пеликаны.

Сократили свою численность и площадь занятых территорий и два других основных пищевых объекта гадюки на острове. Прыткая ящерица также перестала встречаться в восточной и центральной части острова, численность ее в западной части острова невысока, сократилась в десятки раз численность восточноевропейской полевки

На наш взгляд, крупные размеры тела у степных гадюк с о. Орлов были вызваны спецификой условий существования змей на острове. Крупные размеры добычи – птенцов – и ее обилие вызвали увеличение размеров тела змей. При этом возможно два механизма этого увеличения – путем более интенсивного индивидуального роста или же вследствие направленного на увеличение размера тела особей и ускорения темпов роста. Имеющиеся данные не позволяют сделать окончательный вывод в пользу одного из механизмов, но стойкий тренд в сторону уменьшения средних время совпадающий с исчезновением в настоящее размеров тела гнездящихся птиц - объектов питания гадюк, говорит в пользу первого механизма, а существующие отличия по некоторым признакам фолидоза от всех остальных популяций степной гадюки на Украине – в пользу второго. В то же время, отсутствие больших отличий в фолидозе и идентичность по последовательности цитохрома Б популяции о. Орлов и соседних популяций пользу молодости отсутствии свидетельствует В изоляции филогенетической составляющей в наблюдаемых отличиях. Популяция гадюк острова в данный момент сокращает свою численность, что связано не только с сокращением численности пищевых объектов, но и с утратой пригодной для заселения территории.

ЛИТЕРАТУРА

- 1. Ардамацкая Т.Б. К биологии степной гадюки района Черноморского заповедника. Труды Черноморского гос. заповедника. 1958. Вып. 2. С. 107–109.
- 2. Климат // Природа Украинской ССР. Академия наук УССР. К.: Наукова думка, 1984.-232 с.
 - 3. Коли Г. Анализ популяций позвоночных животных. М.: Мир, 1979. 365 с.
- 4. Котенко Т.И. Герпетофауна Черноморского заповедника и прилежащих территорий // Вестник зоологии. 1977. Вып. 2. С. 55—66.
- 5. Котенко Т.И. Питание гадюки степной в Черноморском Государственном заповеднике // Материалы Республиканского семинара-совещания, посвящ. 50-летию Черноморскому государственному заповеднику. К.: Наукова думка, 1978. С. 72–75.
- 6. Котенко Т.И. О степной гадюке (Vipera ursine renardi) на юге Украины//Вопросы герпетологии. Ленинград: Наука. 1981. С. 73.
- 7. Котенко Т.И. Земноводные и пресмыкающиеся / Позвоночные животные Черноморского биосферного заповедника (аннотированные списки видов) // Вестник зоологии. Отдельный выпуск №1. К. 1996. С. 14–19.
- 8. Котенко Т.І., Кукушкін О.В. Гадюка степова, *Vipera renardi* (Christ.) вид Червоної книги України // Знахідки тварин Червоної книги України. К.: Інститут зоології ім. І.І. Шмальгаузена НАН України. 2008. С. 101–132.

- 9. Организационно-хозяйственный план Черноморского государственного заповедника. Харьков: Земпроект. 1978. Архив ЧБЗ.
- 10. Плошница А.И. Влияние островной изоляции и эффекта «бутылочного горлышка» на генетический полиморфизм командорских песцов. Автореф. дис. ... канд. биол. наук.: специальность 03.02.04 "Зоология", специальность 03.00.03 "Молекулярная биология". Моск. гос. ун-т им. М. В. Ломоносова. М. 2010. 26 с.
- 11. Природа Херсонської області. Фізико-географічний нарис / Под ред. М.Ф. Бойко. К.: Фітосоціоцентр. 1998. 120 с.
- 12. Рокицкий П.Ф. Основы вариационной статистики для биологов. Минск. 1961. 224 с.
- 13. Руководство по изучению земноводных и пресмыкающихся / Под ред. Н. Н. Щербака. – К.: Наук. думка, 1989. – 172 с.
- 14. Селюнина З.В. Млекопитающие. Позвоночные животные Черноморского биосферного заповедника (аннотированные списки видов) // Вестник зоологии. Отдельный выпуск №1. К. 1996. С. 39-43.
- 15. Усенко В.П., Черняков Д.А., Чигрин Р.Г. Природная зональность Тендровского залива. Препринт АН УССР.– К.: ИГН, 1988. 38 с.
- 16. Черняков Д.А., Котенко Т.И. Физико-географическая характерстика региона // Биоразнообразия Джарылгача: современное состояние и пути сохранения. К.: Вестник зоологии. 2000. С. 27.
- 17. Nilson G., Andren C. The meadow and steppe vipers of Europe and Asia the Vipera (Acridophaga) ursinii complex // Acta Zool. Acad. Sciet. Hung. V. 47 (2–3). 2001. P. 87–67.

Т. І. Котенко, О. І. Зіненко, С. В. Гаврилюк, З. В. Селюніна СТЕПОВА ГАДЮКА VIPERA R. RENARDI (CHRISTOPH, 1861) ОСТРОВУ ОРЛОВ (ТЕНДРІВСЬКА ЗАТОКА)

Ключові слова: степова гадюка, о. Орлов, популяція, динаміка чисельності, морфологія.

В статті розглядається стан популяції степової гадюки *Vipera r. renardi* (Christoph, 1861), на острові Орлов Тендрівської затоки, особливості біології, морфології та чинники динаміки чисельності.

T. I. Kotenko, A. I. Zinenko, S. V.Gavrilyuk, Z. V. Selyunina STEPPE VIPER VIPERA R. RENARDI (CHRISTOPH, 1861) ON ISLANDS ORLOV (TENDRIVSKA BAY)

Keywords: steppe viper, is. Orlov, population, population dynamics, morphology.

The paper deals with the state populations of steppe viper *Vipera r. renardi* (Christoph, 1861), on the island Orlov in Tendrovsky bay, its biology, morphology and factors of population dynamics.