УДК 595.798:591.51 (477.72)

Русина Л.Ю.¹, Скороход С.В.², Говорун А.В.²

ВЛИЯНИЕ ПАРАЗИТОИДА LATIBULUS ARGIOLUS (ROSSY) (HYMENOPTERA, ICHNEUMONIDAE) НА ПРОДУКТИВНОСТЬ СЕМЕЙ POLISTES DOMINULA (CHRIST) (HYMENOPTERA, VESPIDAE) В СУМСКОЙ ОБЛ. УКРАИНЫ

¹Херсонский государственный университет, г. Херсон, e-mail: lirusina@yandex.ru
²Сумской государственный педагогический университет им. A.C.Макаренка, г. Суми, e-mail: S-Govorun@yandex.ru

Ключевые слова: продуктивность, осы-полисты, паразитоид, Polistes dominula, Latibulus argiolus.

В период интенсивного выкармливания личинок осы-полисты потребляют значительное количество листогрызущих насекомых и играют ведущую роль в естественном контроле их численности. Так, в пище 6 видов полистов Оливер [23] нашел яйца и личинок всех возрастов такого серьезного вредителя леса как американская белая бабочка Hyphantria cunea (Drury). В садах, по данным Никитенко и Свиридова [5], полисты уничтожают гусениц совок, пядениц, боярышницы и ловят летающих насекомых: мух из рода Lucillia, бабочек-листоверток. В колониях тлей и листоблошек осы поедают сахаристые выделения, как так И самих насекомых. Примечательно, что на капустных полях Японии и США полисты используются для контроля численности популяций репницы Pieris rapae (L.) [16, 21, 22], а также табачного бражника Protoparce sexta (Johnson) [18].

Было показано, что потери урожая капусты от гусениц, например, по данным отдела сельского хозяйства в штате Висконсин (США) в 1980 году составили свыше 600000 долларов [16], а каждая средняя семья у *Polistes chinensis antennalis* Pérez собирает за сезон 2200 гусениц *Pieris rapae* (L.) (Morimoto, 1960), у *P. exclamans* Viereck – 1800, у *P. fuscatus* (F.) – 2240 и *P. annularis* – 3420 из Северной Каролины, у *P. fuscatus* из штата Висконсин по данным двух лет 466-567 [16]. В этом плане сравнительное изучение фуражировочного поведения рабочих разных видов и выяснение механизмов повышения их активности представляется одним из перспективных направлений.

Косвенным выражением активности полистов как насекомыхэнтомофагов является продуктивность их семей (число выращенного имагинального населения) [8]. Сравнительный анализ продуктивности семей полистов разных видов, которые широко распространены на Украине [7, 8, 10], представляет интерес в связи с отбором видов перспективных в отношении их использования в агроценозах.

По нашим данным, продуктивность семьи пластичного P. dominula (Christ) зависит от способа ее основания (одной или несколькими самками), места и плотности гнездования [8]. Семьи, основанные одиночными самками, уступают в продуктивности основательницами. При более высокой несколькими Р. dominula плотности гнездования V В укрытиях общая продуктивность семьи (размеры гнезда и количество выращенных имаго) оказывается ниже, чем на растениях, несмотря на то, что в укрытиях преобладают семьи, основанные несколькими основательницами.

Данные о колебаниях продуктивности семьи у ос-полистов в разные годы имеются лишь для небольшого числа видов. У P. versicolor versicolor из южной Бразилии было зарегистрировано увеличение числа выращенных имаго в 1976 г. по сравнению с 1975 г. [15]. Подобные колебания продуктивности семей в разные годы отмечены и для полистов Херсонской области [4]. Поселение P. dominula в колковой лесостепи Черноморского биосферного заповедника (ЧБЗ) изучается с 1992 г. [8]. Высокая численность загнездившихся ос и повышение доли плеометроза регистрировались в 1994, 1998 и 2004 гг. [8]. Показано, что степень повторного использования ячей в гнезде (отношение числа ячей, используемых повторно для выращивания личинки до окукливания к общему числу ячей) меняется в разных фазах динамики численности [8]. В фазе роста численности показатели максимально выражены, а на пике численности и в фазе депрессии они минимальны. Интересно, что в 1997 г. в отличие от 1996 г., у всех видов, населяющих заповедник, было отмечено последовательное выращивание трех особей подряд. Кроме того, в 1997 г. увеличилось также число ячей, в которых последовательно были выращены две куколки [8]. Данные этого исследования свидетельствуют о том, что в условиях 2007 г. по сравнению с 2006 г. выросли показатели размеров гнезд и количества выращенных личинок в семье. Сходные изменения в продуктивности семей разных видов в разные годы несмотря на существенные межвидовые различия [10], а также данные этой работы

межгодовым колебаниям продуктивности свидетельствуют, повидимому, о существенной роли климатических факторов.

Продуктивность семьи P. dominula меняется в разные годы и сопряжена со сроками выживания самки-основательницы в составе семьи и с ее яйценоскостью. Активность самки-основательницы, в свою очередь, коррелирует с условиями зимовки, а также с исходной численностью особей в популяции. На пике численности популяции продуктивность семьи этого вида снижена. Вместе с тем, в целом, весенне-летних погодных vсловий сведений влиянии продуктивность семьи крайне недостаточно. Так, известно лишь, что продолжительность жизненного влияет на следовательно, и на продуктивность семьи P. exclamans Viereck [23].

В данном исследовании проводится анализ влияния зараженности расплода паразитоидом *Latibulus argiolus* (Rossi) (Hymenoptera, Ichneumonidae) на продуктивность семьи *P. dominula*.

МАТЕРИАЛЫ И МЕТОДЫ

Бумажная оса *P. dominula* в пгт Липовая Долина Липодолинского p-она, Сумской обл. Украины гнездится в разнообразных укрытиях антропогенного происхождения.

Общие черты жизненного цикла этого вида таковы. Перезимовавшие осемененные самки-основательницы в 1-й декаде мая строят гнездо и выращивают первое поколение рабочих особей, которые появляются в 1-й половине июня. Семья, развиваясь, переходит от выращивания рабочих к продукции половых особей (самцов и будущих основательниц). Будущие основательницы у этого вида появляются в августе после массового выхода самцов. Распад семьи и спаривание происходит в конце лета и осенью. Зимуют будущие основательницы, а самцы и рабочие осенью погибают.

У паразитоида L. argiolus имеется две генерации: самки первой генерации заражают семьи хозяина с конца мая до середины июня, а второй — со второй половины июля до начала августа.

В сентябре 2010 г. на 4 чердаках хозяйственных и жилых зданий были собраны 57 гнезд $P.\ dominula$.

Для анализа продуктивности семьи заполняли гнездовую карту, очерчивая на трафарете контуры гнезда [2, 3, 9]. Отмечали число мекониев в каждой ячейке гнезда и подсчитывали их общее количество в соте. Поскольку известно, что личинка старшего возраста перед окукливанием выделяет на дно ячейки содержимое задней кишки в виде черного комка [13], то количество мекониев свидетельствует о количестве выращенных личинок, т.е. о соответствующем показателе продуктивности семьи. При

картировании отмечали нахождение в ячее свидетельств пребывания паразитоидов, личинки которых съедают куколку хозяина. Так, *L. argiolus* оставляет по краям ячеи овально-скошенные остатки линочной кутикулы светло-желтого или светло-оранжевого цвета [20]. Иногда можно было обнаружить в ячейке кокон паразита. Количество выращенного имаго рассчитывали как разницу между числом мекониев в гнезде и числом ячей с паразитоидами.

Статистический анализ данных проводили с использованием программы Statistica 6.0 (StatSoft, Inc. 1984-2001) и программы Biostastica 4.03 (S. A. Glantz, McGraw Hill, перевод на русский язык -«Практика», 1998). По критерию Шапиро-Уилка (показатель SW) проводили анализ вида распределения изучаемых параметров. В том случае, когда распределение признаков оказывалось нормальным, при сравнении двух выборок с равными дисперсиями использовали критерий Стьюдента, а при различных дисперсиях по критерию Левена - его модификацию с раздельными оценками дисперсий. В ненормального распределения ДЛЯ сравнения независимых выборок использовали тест Манна-Уитни (Т). Для сравнения нескольких групп количественных данных использовался тест Крускала-Уоллиса (критерий Н); множественные сравнения между группами проводились с использованием критерия Данна (критерий Q) [1]. Связь числа и доли семей, паразитоидов, с одной стороны, с показателями продуктивности семей (учитывались общее число ячей, а также число ячей с 1, 2 и 3 мекониями), с другой, оценивали с помощью теста корреляции Спирмена.

Описание выборочного распределения признаков в тексте и таблицах представлено в виде $M \pm SD$ (где M - среднее арифметическое, SD - среднеквадратическое отклонение) или Me [25; 75] (Me –Meдиана; 25 и 75 – 1-й и 3-й квартили). Критический уровень значимости при проверке статистических гипотез принимался равным 0.05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В 2010 г. на четырех чердаках обнаружены гнезда 57 семей *Р. dominula*, меконий обнаружен в 49 из них, следовательно 8 семей погибли еще в период выращивания личинок, по-видимому, из-за гибели самок-основательниц. Паразитоид и следы его пребывания обнаружены в 25 гнездах (42,1 %, из 57): 14 гнезд были заражены 1-й генерацией паразитоида, а 11 – 2-й генерацией.

Гнезда, не имевшие мекониев, были исключены из дальнейшего статистического анализа. Анализ показал, что в каждом поселении

число (доля) зараженных личинок положительно коррелирует с размерами семьи (0,36 < r_s < 0,61; 0,001 < p < 0,05). Отмеченный выбор наиболее крупных семей хозяина самками паразитоидов можно рассматривать как проявление поведенческой реакции на плотность пищевого пятна (число личинок в гнезде, пригодных для заражения).

Историю заражения поселений описывали, используя метод картирования гнезда (описание числа мекониев в ячейках гнезда и пребывания паразитоидов). Дополнительно учитывали, что в момент заражения паразитоиды выбирают самые крупные семьи в поселении и чем раньше в сезоне заражены семьи, тем меньше они по размерам.

Выделены следующие временные состояния заражения: (1) паразитоиды первой генерации проникают в семью до выхода рабочих; размеры гнезда в конце жизненного цикла до 38 ячеек; ячейки со следами пребывания паразитоида располагаются в центре гнезда; (2) паразитоиды первой генерации проникают в семью после выхода рабочих; размеры гнезда — 27-92 ячейки; ячейки с паразитоидами располагаются как в центре, так и на периферии гнезда; (3) паразитоиды второй генерации проникают в семью, которая выращивает репродуктивное поколение; размеры гнезда — 131-289 ячеек; ячейки с паразитоидами располагаются как в центре, так и на периферии гнезда.

В таблице 1 представлены различные параметры использования ячей и размеры гнезд *P. dominula*, зараженных в различной степени.

Однофакторный анализ (тест Краскела-Уолиса) показал, что выборки, зараженные в разной степени, существенно различаются по параметрам продуктивности. Попарное сравнение по тесту Данна показало, что незараженные и сильно зараженные семьи уступали по всем показателям слабо зараженным семьям (все p < 0.05).

При объединении выборок зараженных гнезд в общую совокупность обнаружено, что зараженные семьи ос были больше по размерам, чем незараженные (тест Манна-Уитни: все р < 0,05).

Число сильно зараженных семей составило 26,5 % из 49 гнезд. Следует отметить неоднородный состав этой группы. Во-первых, это три семьи, зараженные первой генерацией до выхода рабочих, точнее до окукливания первой когорты личинок, когда число пригодных для заражения личинок IV и V возрастов невелико (в среднем бывает заражено 2 личинки, максимально 4). При этом нет условий для проявления функциональной реакции паразитоида. Шесть семей заражены первой генерацией после выхода рабочих, в среднем в таких семьях заражено 12 личинок, максимально 19. Зараженность семьи достигает 50 % (19 из 38 ячей). Но с другой стороны, именно высокая

зараженность на этой стадии в наибольшей степени сказывается на дальнем развитии семьи: ячейки гнезд используются для выращивания расплода лишь однократно. Продуктивность таких семей впоследствии заметно снижена из-за недостатка первых рабочих. Таким образом, сильная зараженность расплода 1-й генерацией паразитоида существенно сказывается на продуктивности семьи.

Таблица 1. Характер использования ячей для выращивания личинок до окукливания в гнездах P. dominula в Сумской обл. в $2010 \, \Gamma$.

Параметры семьи	Незара- женные (N = 24)	Слабо зараженные (N = 12)	Сильно зараженные (N = 13)	Тест Крускала- Уоллиса, критерий <i>Н</i>
Размер гнезда,	22 [16; 40]	218 [168; 295]	48 [38; 131]	23,4
(в ячеях)				p < 0,001
Число ячей с 1	12 [8; 26]	114 [93; 172]	40 [26; 72]	21,5
меконием				p < 0,001
Число ячей с 2	0 [0; 0][0; 60]	46 [43; 61]	0 [0; 34]	27,8
мекониями				p < 0,001
Число ячей с 3	0 [0; 0][0; 25]	18 [6; 34]	0 [0; 0][0; 11]	18,4
мекониями				p < 0,05
Число ячей с	0 [0; 0][0; 0]	3 [2; 6][1; 13]	11 [4; 15][2; 29]	42,4
паразитоидом				p < 0,001

Примечание: полужирным шрифтом выделены статистически значимые различия.

Такие исследования перспективны для создания моделей динамики численности этой важной группы насекомых.

ЛИТЕРАТУРА

- 1. Гланц С. Медико-биологическая статистика. М.: Практика, 1999. 459 с.
- 2. Гречка Е.О., Кипятков В.Е. Сезонный цикл развития и кастовая детерминация у общественной осы *Polistes gallicus* L. (Hymenoptera, Vespidae). II. Динамика роста и продуктивность колонии // Зоол. журн. 1984. Т. 63 (1). С. 81–94.
- 3. Гречка Е.О., Русина Л.Ю. Сравнительное изучение экологии и поведения осполистов в Херсонской области // Материалы коллоквиумов секции общественных насекомых Всес. Энтомол.об-ва, 1 Коллоквиум. Ленинград. 1990. С. 63–68.
- 4. Гринфельд Э.К. Питание общественной осы *Polistes gallicus* L. (Hymenoptera, Vespidae) // Энтомол. обозр. 1977. Т. 56 (1). С. 34–42.
- 5. Никитенко Г.Н., Свиридов С.В. Энтомо- и акарифаги вредителей плодовых культур и винограда Южного берега Крыма и южнобережного предгорья (видовой состав и особенности распределения) // Вестник зоологии. 1999. Т. 10. С. 39—59.

- 6. Русина Л.Ю. О гнездовании ос полистов в Черноморском заповеднике // Проблемы сохранения и восстановления степных экосистем. Материалы межрегиональных научных чтений. Оренбург, 1999. С. 119–121.
- 7. Русіна Л.Ю. Відбір сімей ос-полістів (Hymenoptera, Vespidae, Polistes) для використання в агроценозах // Метода. Збірник наукових праць. Херсон. 1999. С. 57–61.
- 8. Русина Л. Ю. Осы-полисты в природных и антропогенных ландшафтах Нижнего Приднепровья. Херсон: Издательство ХГУ, 2006. 200 с.
- 9. Русина Л.Ю., Гречка Е.О. Жизненный цикл осы *Polistes chinensis* в Херсонской области // Материалы коллоквиумов по общественным насекомым. Петербург, 1993. С. 157–167.
- 10. Фирман Л.А., Русина Л.Ю. Продуктивность семей ос-полистов (Hymenoptera, Vespidae) в Черноморском заповеднике // Природничий альманах. Серія: Біологічні науки. Вип. 4. 2005. С. 152–156.
- 11. Akre R. D. Social wasps // Social Insects / Ed. H. R. Hermann. New York: Academic Press, 1982. Vol. 4. P. 1–105.
- 12. Dew H.E., Michener Ch.D. Foraging flights of two species of *Polistes* wasps (Hymenoptera, Vespidae) // Journ. Kans. Ent. Soc. 1978. Vol. 51. P. 380–385.
- 13. Edwards R. Social wasps. Their biology and control. East Grinstead: Rentokil Ltd. 1980. 398 p.
- 14. Gillaspy J.E. Management of polistes wasps for caterpillar predation // Southest. Entomol. 1982. Vol. 4. P. 334–350.
- 15. Gobbi N., Zucchi R. On the ecology of the *Polistes versicolor versicolor* (Oliver) in southern Brazil (Hymenoptera, Vespidae, Polistini). II. Colonial productivity // Naturalia. 1985. Vol. 10. P. 21–25.
- 16. Gould W.P., Jeanne R.L. *Polistes* wasps (Hymenoptera: Vespidae) as control agent for lepidopterous cabbage pests. // Environ. Entomol. 1984. Vol. 13. P. 150–156.
- 17. Kirkton R.M. Habitat mangement and its effect on populations of *Polistes* and *Irodomyrmex* // Proc. Tall Timbers Conf. 1970. Vol. 2. P. 243–246.
- 18. Lawson F.R., Rabb R.L., Guthrie F.E., Bowery T.G. Studies of an integrated control system for hornworms on tobacco // J. Ecol. Ent. 1961. Vol. 54. P. 93–97.
- 19. Makino S. Biology of *Latibulus argiolus* (Hymenoptera: Ichneumonidae), a parasitoid of the paper wasp *Polistes biglumis* (Hymenoptera: Vespidae) // Kontyu. 1983. Vol. 51 (3). P. 426–434.
- 20. Morimoto R. *Polistes* wasps as natural enemies of agricultural and forest pests. (Studies on the social Hymenoptera of Japan IX) // Sci. Bull. Fac. Agricul. Kyushu Univ. 1960a. Vol. 18. P. 109–116.
- 21. Morimoto R. *Polistes* wasps as natural enemies of agricultural and forest pests. (Studies on the social Hymenoptera of Japan X) // Sci. Bull. Fac. Agricul. Kyushu Univ. 1960b. Vol. 18. P. 117–132.
- 22. Oliver A.D. Studies on the biological control of the fall webform, *Hyphantia cunea*, in Louisiana // J. Econ. Ent. 1964. 57. P. 314–318.
- 23. Strassmann J.E. Worker mortality and the evolution of castes in the social wasp, *Polistes exclamans* // Insectes Soc. 1985. Vol. 32. P. 275–285.

Русина Л.Ю., Скороход С.В., Говорун А.В. ВЛИЯНИЕ ПАРАЗИТОИДА *LATIBULUS ARGIOLUS* (ROSSY) (HYMENOPTERA, ICHNEUMONIDAE) НА ПРОДУКТИВНОСТЬ СЕМЕЙ *POLISTES DOMINULA* (CHRIST) (HYMENOPTERA, VESPIDAE) В СУМСКОЙ ОБЛ. УКРАИНЫ

Ключевые слова: продуктивность, осы-полисты, паразитоид, Polistes dominula, Latibulus argiolus.

В статье анализируется продуктивность семей *Polistes dominula* и уровень их зараженности паразитоидом *Latibulus argiolus* в укрытиях Сумской области Украины. Показано, что зараженные семьи были более продуктивны, чем незараженные. Проводится сравнение показателей продуктивности семей осполистов на разных фазах динамики численности популяции.

Rusina L.Y, Skorokhod S.V., Govorun A.V. THE IMPACT OF *LATIBULUS ARGIOLUS* (ROSSY) (HYMENOPTERA, ICHNEUMONIDAE) PARASITOIDS ON COLONY PRODUCTIVITY OF *POLISTES DOMINULA* (CHRIST) (HYMENOPTERA, VESPIDAE) IN THE SUMY OBLAST OF UKRAINE

Keywords: colony productivity, Polistes wasps, parasitoid, Polistes dominula, Latibulus argiolus.

Colony productivity of *Polistes dominula* nested in shelters and the level of colony infestation by *Latibulus argiolus* in the Sumy oblast of Ukraine are analyzed. It is shown that infested colonies were more productive than non-infested ones. A comparative analysis of *Polistes* colony productivity in different phases of population cycles is made.